Two-stage biodegradation of contaminating wastes linked to bioenergy generation using genomic approaches

Two-stage biodegradation of contaminating wastes linked to bioenergy generation using genomic approaches

Project ID: HU09-0091-A1-2016

Projektgazda/Projekt Promoter

SEQOMICS Biotechnológia Korlátolt Felelősségű Társaság

Program Operátor/Programme Operator

Nemzetközi Fejlesztési és Forráskoordinációs Ügynökség Zártkörűen Működő Részvénytársaság

Megvalósítási időszak/Implementation period

2016.05.02. - 2017.04.28.

Hazai Projekt Partnerek/National Project Partner

SEQOMICS Biotechnológia Korlátolt Felelősségű Társaság, Magyar Tudományos Akadémia, Szegedi Biológiai Kutatóközpont

Donor Projekt Partner/Donor Project Partner

The Norwegian Institute of Bioeconomy Research

Összköltség / Total budget (EUR)

234 195 025 HUF 771 139,36 EUR

EGT/Norvég támogatás összege / EEA/Norwegian Grant (EUR)

198 801 105 HUF 654 596,99 EUR

Project subpage

The municipal wastewater, wastes from industry and agriculture contain large amounts of organic materials that are subjects of biological degradation processes. Disposal of these waste materials can be combined with the generation of alternative energy sources. Biogas industry uses organic waste-based alternative energy generation, the anaerobic degradation process is performed by specific consortia of microorganisms, the final biogas product consists of mainly methane and carbon dioxide. In the proposed project, our general objective was to engineer a novel two-stage hybrid waste biodegradation technology and to transform and control the microbial communities to produce various end-products of interest (especially biohydrogen instead of biomethane and CO2). The directed evolution was achieved by physical-chemical interventions. Cutting-edge approaches were used to continuously monitor the microbial communities. We accurately assessed the taxonomic composition and metabolic potential and even the active metabolic functions in the aerobic and anaerobic decomposing communities using our metagenomic and metatranscriptomic approaches. We determined and described the necessary waste material-dependent interventions that could direct the decomposition process to result in the desired biohydrogen as end product. The first dark fermentation step was followed by a second photoheterotrophic stage, where green algae biomass was generated in the wastewater effluents leading to further decontamination of the wastewater (measeured as decrease in COD, total nitrogen and phosphorous). The genomes of the green algae strains showing the highest efficiency were determined by sequencing.